
DATA CONVERSION:

 The conversion of MicroStation cells to Arc/Info
Symbology

by

Katherine E. Riegelmann and James R. Hoff
DYNTEL Corporation
3530 Manor Dr. Suite 4
Vicksburg, Mississippi

ph: (601) 634-2468, fax (601) 634-4584
email: riegelk@ex1.wes.army.mil

and

Edward A. Riegelmann
USAE Waterway Experiment Station

Tri-Service CADD/GIS Technology Center
3909 Halls Ferry Road

Vicksburg, Mississippi  39180
ph: (601) 634-2468, fax (601) 634-4584

          email: riegele@ex1.wes.army.mil



2

THE CONVERSION OF MICROSTATION CELLS
TO ARC/INFO SYMBOLOGY

Introduction

The Tri-Service Spatial Data Standards (TSSDS)1 have been designed
and implemented by the Tri-Service CADD/GIS Technology Center at the U.S.
Army Corps of Engineers’ Waterways Experiment Station, in Vicksburg,
Mississippi. The TSSDS were developed as a comprehensive master and
environmental planning data model for Air Force, Army, and Navy installation
projects. The standards address data content, classification, format, and
presentation of geospatial entities depicted in large scale mapping (primarily, 1
inch = 400 feet (1:4800) to 1 inch = 50 feet (1:600)). The TSSDS development
program has defined a generic data model, based on the Spatial Data Transfer
Standards (SDTS - FIPS 173), that can be implemented on multiple
CADD/GIS platforms.

The need for standardization arises from the CADD/GIS community’s
             need to share data, such as drawings, attribute information and symbology,

across CADD/GIS platforms. The TSSDS provide a variety of standardized
symbology to be used across multiple platforms. These symbols were designed
and created in MicroStation and stored in a variety of cell libraries as they relate
to the TSSDS. To avoid duplication of efforts, these symbols were converted  
from MicroStation to AutoCAD and Arc/Info formats, respectively. And, as a
result, the symbols had to be customized to meet the AutoCAD and Arc/Info
requirements. The conversion of symbology from one platform to another is a
subject that has not been widely addressed by the CADD/GIS industry and
user community. The intent of this paper is to provide guidance to the
CADD/GIS community on the conversion of symbology from a MicroStation
cell library format to an Arc/Info markerset format.

Methodology

MicroStation2

MicroStation is a Computer-Aided Design and Drafting (CADD)
computer system that is used to input, store, retrieve, analyze, manipulate, and
present graphic and non-graphic data. MicroStation is used in civil,
mechanical, and other engineering design and architectural activities. This
system has interactive graphics capabilities and includes a variety of
engineering calculation and analysis functions.



3

MicroStation design (.dgn) files, also referred to as IGDS (Interactive
Graphic Design Software) files, may contain any of 127 possible element
types. IGDSARC3, the Arc/Info command that initiates the conversion of 
IGDS files, only translates 11 of  these 127 element types. Translatable
elements include: cell (2), line (3), line string (4), text (17), shape (6), text node
(7), curve (11), complex string (12), complex shape (14), ellipse (15), and arc
(16).  The number beside the element type is used as a translation parameter in
Arc/Info’s IGDSARC command. An IGDS file can have one, many, or all of
these element types. IGDS elements are organized by layer or levels. Any
number of levels can be extracted to produce a coverage within Arc/Info based
on one, many, or all of these elements.

Cell Definition

Within MicroStation, elements can be grouped into a single element
called a cell. Cells are what Arc/Info would refer to as symbols or markers. A
cell is a group of elements combined into one complex element that describe a
symbol. Cells are stored in a cell library for use within the existing design file
as well as any other design file referencing the cell library. Cells are used to
minimize redundancy, and standardize the use of frequently placed symbols.

Cell Extraction from MicroStation

To place cells from a cell library into a MicroStation design (.dgn) file,
there is a utility available from the Intergraph Bulletin Board System called
Cellplot.ma. Once all cells are placed in a single design (.dgn) file, the user can
create a design (.dgn) file for EACH cell, making the conversion to a symbol in
Arc/Info much easier.

In MicroStation, open the design (.dgn) file that holds all the cells from
the cell library. To extract a cell one at a time, use the PLACE BLOCK2

command. This command allows the user to put a “block” around the cell of
choice. Arc/Info will read the boundaries of this “block” and produce a TIC
and BND file based on those boundaries. To maintain the integrity of the cell, it
is necessary to place a “block” that is equal on each side, i.e., x = y. There is a
command in MicroStation called DX2=x,y, i.e dx = 1,-1 that allows the user to
place a “block” equally on each side. Once the first point is placed, this
command can be executed to give the user a  “square block”. To maintain
consistent scaling of the individual symbols, use the same “block” dimensions
as a template for all symbols, which will ensure the consistency of the symbol
scale between platforms.

It is important to note that if the cell contains text, (MicroStation
element 17), and the user intends on using that text as part of a symbol, the
user must breakdown the text into primitive elements, i.e. line (3), linestring



4

(4), shape (6), etc., to better manipulate them within the Arc/Info coverage.
Arc/Info WILL translate element text (17) and store it in a sub-class called
anno.igds within a coverage. The text will be placed in the anno.igds sub-class
of the coverage using the ANNOTEXT option during the use of the
IGDSARC3 command (see page 5). However, to store text within an Arc/Info
font library, anno.igds will NOT be read. So, it becomes necessary to
breakdown the cell into its primitive elements so the text can be manipulated as
a linestring (4). The DROP COMPLEX SHAPE2 command will breakdown
the elements as stated above. If the cell does not contain text, the cell will be
saved within the design (.dgn) file as element (2), and Arc/Info will translate
the cell components to arcs.

If a cell is broken down into its primitive elements and text (17)
 exists, the DROPTEXT2 command can be executed to decompose the

text into linestrings (4). Now a design (.dgn) file can be created with the
original cell’s primitive elements. This will allow Arc/Info to read the
coverage as arcs without text.

Note: Text can also be added to the symbol itself within the ArcPlot
session when creating the markerset. The text would reside within another layer

     of the marker, making reference to a default textset or a custom designed textset.
How to manage the text is a user preference based upon an individual’s plans
of how to organize the font libraries and the individual patterns.

Now that the “block” has been placed, execute the DROP COMPLEX
SHAPE and DROP TEXT as required. Next, isolate the elements that were
“blocked” off so individual design (.dgns) files can be produced for each
symbol. The PLACE FENCE2 command creates a rectangle that is used to
select a set of elements. Once the user has defined the contents of the “fence”,
it is then necessary to ACCEPT the “fence” contents and create a new design
(.dgn) file. The user will be prompted to accept or reject the contents of  the
fence. The user can place this new design (.dgn) file in the directory of choice,
i.e.,  ff2=<path>/<file name>.dgn. The resulting design (.dgn) file can now be
converted to an ARC/INFO coverage.

IGDS to ARC

Once the design (.dgn) file has been created, the IGDSINFO3

command can be executed from the ARC prompt. This command will break
down the elements of the design (.dgn) file and give the user a better
understanding of only those elements needed to create a customized coverage.
This command provides a complete summary of element types; the number of
elements in each level, color, line style and weight, and how often that element
occurs in the file. Unsupported elements will be flagged NOT SUPPORTED.

IGDSINFO <igds_file>



5

After determining the structure of the IGDS design (.dgn) file, convert
the design (.dgn) file from MicroStation to Arc/Info by using the IGDSARC
command at the Arc prompt.  See below.

Arc:  IGDSARC <in_igds_file> <out_cover> {2D|3D} {xmin} {ymin} {xmax} {ymax}
             {OVERLAP | INSIDE} {text_width}

Usage for this command:

 <in_igds_file> - name of IGDS file to be translated.

 <out_cover>  - name of the coverage to be created from the input IGDS file. The
 <out_cover> may contain any combination of points, lines or
  annotation.  An INFO file name <out_cover>.ACODE will be
  created for IGDS attributes. An optional binary system file called

                <out_cover>.alink will contain database pointers.

{2D | 3D}          - specifies IGDS file to be two or three dimensional.

         2D               - two dimensional IGDS file (default).

                        3D                           - three dimensional IGDS file.

{xmin} {ymin} {xmax} {ymax}

                          - desired coordinate range of elements to be translated. Either all or
                 none of these values must be entered. The default is the entire range
                 of the IGDS file. IGDSINFO will display the x,y range of the file.

{OVERLAP | INSIDE}              -  when x and y range is specified.

          OVERLAP              -  all elements whose bounding boxes overlap the specified x,y 
 range are extracted.

           INSIDE                   -  all elements whose bounding boxes are completely inside the 
 specified x,y range are extracted.

          {text_width}            -  width of the IGDS-TEXT item. The default will be 12 if no
                               text_width is given.

Upon entering the IGDSARC command, a dialog box will appear and
prompt the user for the IGDS-to-ARC conversion as follows:

Enter layer names and options (type END or $REST when done)
=====================================================
Enter 1st layer and  options:
Enter 2nd layer and options:

.

.



6

Here is the usage for the each response:

<layer_name | END | $REST> <level> <color> <line_style> <line_ weight> <element
type> {cell_name} {option_1 ... option_n}

Wild cards ( * ) can be used in place of the above responses. The wild card indicates that all
the elements associated with the chosen element will be translated provided they meet the
extraction criteria. Note: the user cannot leave empty fields; an integer or wild card must be
used.

Special Note:   when entering layers and options the user  has the following options:

<layer_name | END | $REST> - layer description.

   layer_name             - user defined  

               END                          - ends layer input.

               $REST                       - allows the user to take all remaining layers that have been
       previously specified.  Must be the last layer specified, END
       will not be needed. If $REST is not specified, remaining
       layers WILL NOT be translated. To translate ALL element
       types and include them in one coverage, use the ALL option
       i.e., $REST ALL.
       Note: Typically, for the purposes of converting cells to a 
       coverage, the $REST ALL function is adequate. It, again, is
       a user preference as to how to extract elements and store them

<level>                       - levels range between 1 and 63.

<color>                       - colors range between 0 to 255.

<line_style>                    - line styles range between 0 to 7.

<line_weight>             - line weights are between 0 to 31.

<element_type>       - the valid element types range from 1 to 127. Keep in
      mind that only 11 elements types are translated by
      Arc/Info, as stated previously.

           {cell name}                -   there must be an entry here if the element type is 2; 
                 otherwise the field should be blank. If the $REST ALL

     option is used no entry needs to be made. The cell
     will be translated to arcs.

            {option_1...option_n} - the options here are many depending on the users needs 
                     and desired output for the coverage.



7

Now that the coverage is created, it is not necessary to build topology
for the coverage.  Topology has no effect on the creation of  FONTS,
PATTERNS, and MARKERSETS, and would only be neccessary to perform
spatial analysis on the coverage itself. Again, it depends upon the user’s use of
the coverage.

Resulting from the execution of the IGDSARC command is an INFO data
file named <out_cover>.ACODE3, which holds the graphic attribution codes
from the IGDS design (.dgn) file. These codes can be used to perform relates and
joins to the feature attribution tables as desired. The ACODE file can also be
used to manage symbology and store marker characteristics such as fonts and
pattern numbers. Within the ACODE file is a graphic attribution code called
IGDS-TEXT. It is within that field that the cell name from IGDS design (.dgn)
file cell (2) is stored.

Editing the Coverage in ArcEdit

Once the coverage has been created using the IGDSARC command,
the coverage is ready to be edited within the ArcEdit session. When the
coverage (symbol) is drawn in ArcEdit, the coverage appears with a “box”
around the desired coverage. This “box” is the “block” that was placed around
the symbol (cell) in MicroStation. This arc will need to be deleted unless it is
part of the symbol itself.

If there is annotation within the symbol and the DROP COMPLEX
SHAPE and DROP TEXT commands were executed, the text will appear as
arcs and can be edited and manipulated as such.

During the execution of the IGDSARC command, BND and TIC files
were automatically created, based on the placement of the “block”. However,
the TIC ID’s are not properly ordered when they appear in the ArcEdit session.
Each individual coverage (symbol), needs to be prepared for insertion into a
font library in the form of a pattern. During the ArcEdit session it is necessary
to re-calculate the TIC ID’s to their appropriate order prior to placing it in a
font library.  An error message will appear at the Arc prompt stating an error
has occured if the TIC ID’s are not properly calculated. Arc/Info does not allow
TIC’s to have the same value as another TIC at any time. The following
commands allow the user to add a value of 10 to each TIC, making it easier to
re-calculate the TIC’s to their correct values:
                                     

EF TIC      
SEL ALL        
CALCULATE  $ID = $ID + 10

Now each TIC will be numbered 11, 12, 13 and 14 respectively, and editing is
simplified. Now the TIC’s can be calculated to their proper order.



8

Example:

                                 1          2                     

         3                      4

Once the TIC’s are calculated correctly, the arcs must ALSO be
properly calculated to reflect the desired output. To create specific symbols,
such as solid fill (also called panel fill) or single lines, it is necessary to
calculate the User-ID’s of the coverage arcs within the ArcEdit session. This
will determine how the arcs will be stored in the font library and pattern. If the
User-ID’s are not calculated to a value listed below, the font will not be read.
An error message will appear stating just that. Note: Within the ArcEdit
session, if an arc is to be calculated for solid fill, the arc must have only one
node. Select all the arcs and use the UNSPLIT3 command to eliminate pseudo
nodes.

UNSPLIT <none | all>

         If you want:           The User-ID
        (within the marker)                   must equal:

                          Single-lines                2
             Fat-lines                6
             Solid fill                7

Generalizing a Coverage

Because there are limitations to the amount of vertices that can exist
within a font, it is necessary to use the ARC command GENERALIZE2  to
weed out vertices within a coverage.  A weed tolerance is based on the amount
of weed necessary. The vertex limitation per pattern is 1,000. There are only a
total of 39,000 vertices allowed per font. This is a MAJOR limitation when
creating customized markers, especially when the user can have up to 127
PATTERNS per font. Coverages (patterns) that have a lot of circles, curved
arcs and very dense arcs SHOULD be generalized. When a lot of markers are
involved, and many fonts are being used, this command becomes very
necessary!

GENERALIZE <in_cover> <out_cover> {weed tolerance}



9

Creation of Fonts and Patterns

Now that a coverage exists, the appropriate ID’s have been calculated,
and the coverage has been generalized (if necessary), the creation of fonts and
patterns begins. In order for a marker to be read within a markerset, each
marker must make reference to a font and a graphic pattern that represents
each symbol. A font organizes and stores patterns that have similar applications
and characteristics. A pattern is stored within a font as a pattern cell and holds
graphic contents that are used in symbol layers.

In order for a marker to be drawn, the marker must exist in a font
        library and be assigned to a pattern. The pattern acts as a “coverage” within a font

and can be manipulated as such. The ARCFONT2 command is used to insert a
coverage into a font, and assign a pattern number. This is done within the
ARC session.

     Once a pattern is in place within the font library, the user may find it
necessary to take that pattern back out and manipulate it. The FONTARC2 

command allows the user to pull the pattern out of the font library as a coverage.
After the changes have been made to the pattern, the  ARCFONT command
would be used again to return the pattern to the font library. Pattern numbers
can be overwritten or re-used for a different pattern.

 ARCFONT  <in_cover> <out_font> <out_pattern>

   FONTARC  <out_font> <pattern_number> <out_cover>

To display a font library within the ArcPlot session, FONTDUMP2 

allows the user to view the font and pattern prior to inserting a new one into the
font library. This should prevent overwriting of patterns and decrease confusion
as to what pattern numbers are available within that font library.

         FONTDUMP <marker | line | shade> SCREEN             
                                        {start_pattern}{end_pattern}
   

It is important for the user to keep track of the font and pattern number.
This will decrease the likelihood of the user overwriting markers that currently
exist. The handling of the fonts and patterns is a user preference and there is no
set guideline as to how to manage the font libraries. Often times font libraries
are grouped according to usage, for example, all utility markers would exist in
one font library.

Arc/Info provides font libraries from 0 to 19, which includes various
styles of text, marker patterns, and line styles. Fonts 20 to 25 contain custom
patterns which can be altered or manipulated by copying them to a local
workspace. This allows for the creation of additional font libraries. Fonts 26 to
40 can be created for further customization of symbology.



10

Arc/Info searches the local directory first, so any customizing that is
done will be used first in place of the fonts in the IGL directory, unless
otherwise indicated.

 The FONTCREATE2  command at the ARC prompt initiates the
creation of additional fonts. Customized fonts should be placed in either the
users local workspace, the $ARCHOME/igl63exe/FNT<#> directory, or both. 

When ARC is executed, the customized fonts will automatically be
made available for use within the work session.

            FONTCREATE <font>{xmin}{ymin}{xmax}{ymax}

Creation of Arc/Info Markersets

Now that the coverage has been placed into a font and assigned a
pattern number, creation of a customized markerset begins. Within the ArcPlot
session the font and the markerset are associated with one another.

Markersets can contain up to 999 symbols.  The user needs to keep in
            mind that the default symbol sets, i.e, Plotter.mrk, Carto.mrk, etc., use marker-

symbols 1 to 100. To avoid confusion, it may be easier to start a new markerset
beginning with 101.  This will eliminate the tendency to overwrite existing
markers.

To initiate the creation of a new markerset, the default markerset must
be cleared, or it will be read into the selected markerset. In the ArcPlot
session use the MARKERDELETE3 command. Note: The
MARKERDELETE command can also be used to delete a specific symbol if
indicated.

 MARKERDELETE <symbol | all>

 A new markerset can be created by using the MARKERSAVE3

command.  The use of this command will create an empty markerset to hold
new markers. Note: The MARKERSAVE command is also used to save an
already existing markerset.

  MARKERSAVE <new_markerset.mrk> 

The new markerset needs to be selected with the MARKERSET3

command.  This command designates the markerset created by using the
MARKERSAVE command above.

   MARKERSET  <markerset.mrk> 



11

A font must be designated with the MARKERFONT3 command, and
the pattern with the MARKERPATTERN3 command.

    MARKERFONT <font_number>
  MARKERPATTERN <pattern_number>

Marker color, size, angle, offset, pen, for example, as well as other
marker characteristics, can be added to the marker depending on the user’s
desired output.

As stated previously, text can be added to a symbol using default
textsets or custom designed textsets by creating additional layers within the
marker. The MARKERLAYER3  command allows for multiple layers within
one marker. MARKERLAYER specifies which layer in the currently selected
marker will be affected by any changes.  Placing text from an already existing
font library would follow the same procedures mentioned above. The font and
pattern must be specified per layer. Multiple layering is NOT limited to text.
MARKEREDIT3  allows interactive modification of markers and markerset
files through a series of invoked menus. MARKEREDIT is very helpful for
modifying custom symbols such as editing, saving, deleting, copying and many
other drawing requirements. Text can easily be added and manipulated within
MARKEREDIT. However, keep in mind that multiple layers are stored in
multiple patterns and often times multiple fonts. In the event that these markers
need to be translated BACK to MicroStation through ARCIGDS3, the
FONTARC command pulls out ONE pattern at a time. The marker itself is
made of multiple layers but is not stored as one element. The output of the
marker is based on the referencing of multiple fonts and patterns.

MARKERLAYER <layer>
MARKEREDIT
ARCIGDS  <in_cover><out_igds_file><COMPLEX|NOCOMPLEX>

       <VANILLA | ACODE | SOURCE> <in_igds_seed_file>
        {in_cell_library}{in_property_map}{in_features}{out_elements}

When creating a new marker, it is important to view the marker prior to
putting it into the markerset.  This is to ensure that the parameters chosen were
executed correctly.  Use the MARKER3 command to view the marker. If the
marker is satisfactory, it can be placed in the markerset using the
MARKERPUT3 command.  The final step in creating a markerset is saving it.
This is VERY important - do not exit ArcPlot prior to executing the
MARKERSAVE3 command.

MARKER <* | xy>
MARKERPUT <symbol>
MARKERSAVE <markerset.mrk>



12

 Note:  The user can view the newly created markerset using the following
command:

SYMBOLDUMP3 <line | marker | shade | text> SCREEN
        <start pattern #> <end pattern #>

Once the MARKERPUT command is executed, the above steps can be repeated
for each new symbol. When to save the markerset is at the user’s discretion and
can be done at any time.
             Once the markerset is complete, exit from the ArcPlot session and begin
with the creation of additional markers as needed.

Conclusion

Here at the Tri-Service CADD/GIS Technology Center, many
individuals provide support for the development of the Tri-Service Spatial Data
Standards (TSSDS). One of our primary functions is to support the
manipulation, modification and creation of symbology in Arc/Info,
MicroStation and AutoCAD. Symbology is gathered from a variety of existing
symbols used by many installations and agencies. We also custom design
symbols as the need arises. While researching the integration of symbology
from one CADD/GIS platform to another, we found that the documentation for
creation of symbols, provided by the Environmental Systems Research Institute
(ESRI), was very good. However, we needed to integrate the use of other data
formats into these methods. Granted, there exists supporting documentation for
those methods as well. But our goal was to bring these methods together in an
attempt to simplify these concepts. Given the amount of data sharing across
various CADD and GIS platforms, we wanted to create a simplified
methodology for symbol translation here within The Center. We wanted also to
share our methods with the rest of the CADD/GIS community that may be
creating symbols in this manner.



13

   References Cited

1.  Tri-Service CADD/GIS Technology Center; “The Tri-Service Spatial
     Data Standards, Release 1.4”, 1995. The product was a software
     application developed to store, manage, and output geospatial data
     standards. The application was released on CD-ROM, and is available
     over the Internet from: “http://mr2.wes.army.mil”.

2.  Bentley Systems, Inc., and Intergraph Corporation, “MicroStation 2D
     Graphics Level 1, Course Guide”, 1994. MicroStation is a registered
     trademark of Bentley Systems, Inc. IGDS is a trademark of Intergraph
     Corporation.

3.  Environmental Systems Research Institute, Inc., “On-Line Documentation:
     Arc;  ArcPlot;  ArcEdit;  Map Display, Arc/Info Query and Output”
     Arc/Info release 7.0.3”, 1994. Arc/Info is a registered trademark of
     Environmental Systems Research Institute, Inc.

* Special thanks to the Tri-Service CADD/GIS Technology Center in Vicksburg,             
   Mississippi for their support of this paper and presentation.

* Special thanks given to the technical support staff at Environmental Systems
   Research Institute, Inc., in Redlands, California, Boston, Massachusetts., and
   San Antonio, Texas.



14

APPENDIX

Sample AML's used in the creation

of the Arc/Info Symbology



15

Note:  These AML’s have been modified to reflect general path names.

/* EDIT.AML :  THIS WAS USED AFTER EXTRACTION OF MICROSTATION CELLS AND /*THE
CREATION OF A DGN. WE ARE UPDATING MARKERS FOR ENTRY INTO A FONT /*LIBRARY.

/*      Jim Hoff and Kathy Riegelmann  10/6/95

&ECHO &ON

ae
display 9999
ec [getcover * -all]
de arc tic id
draw

/*  This calculates the TIC ID’s  into their proper order. The TIC’s are
/*   improperly translated from Microstation into Arc/Info. A value of  10
/*   is added to each tic. Arc/Info will not allow duplicate tic ids.

sel all
cal $id = $id + 10

sel $id = 11
cal $id = 3

sel $id = 12
cal $id = 1

sel $id = 13
cal $id = 2

sel $id = 10
cal $id = 4

de TIC ID



16

/* EDIT.AML

/*    In order to place a coverage into a font, the arcs must be calculated
/*    to either 2 (for single lines), 6 (fat lines) and 7 (solid fill).
/*    Change the $id to reflect your pattern of choice.

ef arc
sel all
cal $ID = 2, 6 or 7

draw

/*  Labels are not necessary for processing of the pattern.

ef label
sel all
delete

/*   This will eliminate the 'block' that was created and translated during
/*    the IGDSARC command. This arc is not needed.

ef arc
sel one
delete

save
q

&ECHO &OFF



17

/* MARKER_DF.aml - PUTS SYMBOLS BY FONT AND PATTERN
/*                                INTO A MARKER SET

/*  Jim Hoff and Kathy Riegelmann 10/6/95

&ECHO &ON

ap
disp 9999 3

markerdelete all
markerset [response 'enter marker set'].mrk
markerfont [response 'enter font']
markerpattern [response 'enter pattern']
markercolor [response 'enter color']

/* to view symbol at a larger size

markersize [response 'enter symbol size (for viewing only)']
marker *
markersize [response 'enter size of marker']
markerput [response 'enter markersymbol']
symboldump marker screen {start symbol} {end symbol}
markersave [response 'enter markerset to save'].mrk

yes

quit

&ECHO &OFF



18

/*   MARKERINFO.aml:  USED TO DISPLAY MARKER INFO AND CREATE A
/*                                 WATCH FILE FOR DOCUMENTATION

/*          Kathy Riegelmann and Jim Hoff   10/95

ap

&echo &on

markerdelete all

/*  setting a variable for the selected symbolset

&setvar LIBRARY [response 'Markerset Name']

/*  creating a watch file for storage of markerinfo reference

&watch %LIBRARY%.wat

markerset %LIBRARY%

&do i := 101 &to 500

MARKERINFO %i%

&end
&return
q

&watch &off

&echo &off


